The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function.

نویسندگان

  • Carlos M Ferrario
  • Jasmina Varagic
چکیده

The study of experimental hypertension and the development of drugs with selective inhibitory effects on the enzymes and receptors constituting the components of the circulating and tissue renin-angiotensin systems have led to newer concepts of how this system participates in both physiology and pathology. Over the last decade, a renewed emphasis on understanding the role of angiotensin-(1-7) and angiotensin-converting enzyme 2 in the regulation of blood pressure and renal function has shed new light on the complexity of the mechanisms by which these components of the renin angiotensin system act in the heart and in the kidneys to exert a negative regulatory influence on angiotensin converting enzyme and angiotensin II. The vasodepressor axis composed of angiotensin-(1-7)/angiotensin-converting enzyme 2/mas receptor emerges as a site for therapeutic interventions within the renin-angiotensin system. This review summarizes the evolving knowledge of the counterregulatory arm of the renin-angiotensin system in the control of nephron function and renal disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Update of Renin-angiotensin-aldosterone System in the Pathogenesis of Hypertension

The activation of renin-angiotensin-aldosterine system(RAAS) is one of the main pathogenesis of hypertension. All the components of RAAS are present in the kidneys at higher concentrations compared to plasma levels, and intrarenal formation of angiotensin II (Ang II) is independent of the systemic RAAS. There are some unique features in intrarenal RAAS compared to systemic RAAS. Unlike JG cells...

متن کامل

The ACE2/Ang-(1-7)/Mas Axis Regulates the Development of Pancreatic Endocrine Cells in Mouse Embryos

Angiotensin-converting enzyme 2 (ACE2), its product Angiotensin-(1-7) [Ang-(1-7)], and Ang-(1-7) receptor Mas, have been shown to regulate organogenesis during embryonic development in various species. However, it is not known whether a local ACE2/Ang-(1-7)/Mas axis is present in the fetal pancreas. It is hypothesized that there is a local ACE2/Ang-(1-7)/Mas axis in the embryonic pancreas in mi...

متن کامل

ACE2 and Angiotensin-(1-7) in Hypertensive Renal Disease

The recently discovered angiotensin-converting enzyme-related carboxypeptidase 2 (ACE2)-[Angiotensin-(1-7)(Ang-(1-7)]-Mas receptor axis has an opposing function to that of the ACE-Angiotensin II (Ang II)-Angiotensin type 1 (AT1) receptor axis. Ang-(1-7) is present in the kidneys at concentrations comparable to those of Ang II and is associated with vasodilation, modulation of sodium and water t...

متن کامل

ACE2-Ang-(1-7)-Mas Axis in Brain: A Potential Target for Prevention and Treatment of Ischemic Stroke

The renin-angiotensin system (RAS) in brain is a crucial regulator for physiological homeostasis and diseases of cerebrovascular system, such as ischemic stroke. Overactivation of brain Angiotensin-converting enzyme (ACE) - Angiotensin II (Ang II) - Angiotensin II type 1 receptor (AT1R) axis was found to be involved in the progress of hypertension, atherosclerosis and thrombogenesis, which incr...

متن کامل

The effect of progressive aerobic continuous training on angiotensin-1, angiotensin-2 and angiotensin-converting enzyme type 2 in patients with heart failure

Background: Chronic hypertension causes structural and functional changes in the heart, ultimately leading to heart failure (HF), which further increases mortality and morbidit. HF is a complex clinical syndrome caused by various structural or functional abnormalities of the heart that impair the filling capacity of the ventricles. The findings of various trials have shown the association betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 298 6  شماره 

صفحات  -

تاریخ انتشار 2010